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Abstract

Numerical analysis of the standard continuum description of a dilute dispersed phase as applied to a

laminar, particle-laden, mixing layer during its initial evolution has been performed. The flow has been

previously analyzed under the framework of linear stability analysis where both the continuous and the

dispersed phases are considered as continua. Earlier studies had neglected the closure terms resulting from

the averaging of the nonlinear transport term involved in the derivation of the dispersed-phase momentum

equations. In this work, Lagrangian particle tracking was coupled to an incompressible Navier–Stokes
solver to directly estimate the closure terms (referred to as the averaging-stress terms) and compare them to

the other terms balancing the dispersed-phase continuum equations. Calculations were performed for

particle Stokes numbers of 1, 10, and 50, and for a mass loading of one. Dispersed-phase flow quantities

such as the number density and velocity were determined by averaging the data in the spanwise direction. A

parametric study of the influence of the number of particles, for Stokes number of one, showed that an

improved approximation to a continuum can be obtained by increasing the number of particles. Examining

the momentum balance in detail revealed that the main contributors were the time-derivative, convective,

and the interfacial force terms. The averaging stress was at least two orders of magnitude smaller for all the
Stokes numbers studied. However, the averaging stress, though negligible in magnitude, showed a deter-

ministic variation in the center of the mixing layer. The results lend support to the currently used con-

tinuum equations for analyzing the stability of laminar, particle-laden mixing layers, and possibly other

free-shear flows such as jet and wake flows.
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1. Introduction

Numerical investigation and modelling of particle- and droplet-laden flows has recently evoked
much interest. As a first step in analyzing fluid–particle systems, there have been several studies on
the stability of laminar, particle-laden, free-shear flows to infinitesimal perturbations. Examples
include mixing layers (Saffman, 1962; Yang et al., 1990; Wen and Evans, 1994, 1996; Dimas and
Kiger, 1998; Tong and Wang, 1999; Narayanan and Lakehal, 2002), jets (DeSpirito and Wang,
2001), and wake flows (Yang et al., 1993) with a dilute suspension of particles. The initial evo-
lution of such flows is described by the growth of unstable perturbations, the shape and growth
rates of which could be obtained by performing a linear stability analysis of the mean velocity
profile. The above studies present useful information on the inherent nature of these flows in
terms of the dominant instability modes. The preferred framework in these studies has been the
Eulerian continuum formulation, describing both the fluid and the particle phases as continuous
media. However, some issues regarding the applicability of such a continuum formulation for
these problems remain unresolved.

A detailed description of such flows includes the position and velocity information of a large
number of dispersed particles, apart from the continuum (Eulerian) description of the fluid phase.
Such a description is often unnecessary, apart from being beyond the reach of current and
foreseeable computing capabilities. For this reason, particular attention has been paid to the
description of the dispersed phase as a continuum (Reeks, 1992; Zhang and Prosperetti, 1997),
where the dispersed phase is described in terms of a small number of unknowns; typical examples
being the volume fraction and the average particle velocity. The derivation of continuum equa-
tions usually requires averaging, which is justified by the large number of particles present in
practical flows. For example, particles with 50l diameter occupying a volume fraction of 10�3

results in about 105 particles per cm3.
The equations derived by averaging are not closed, because averaging the nonlinear convection

of momentum and energy gives rise to new terms. The challenge involved in obtaining a closed set
of equations by relating these terms to the average flow quantities is well known; the best illus-
tration being the area of turbulence modelling. However, in contrast to single-phase turbulent
flows where the continuum behaviour of the fluid is not in question, the averaging involved in a
dispersed-phase flow operates at a more fundamental level, with the closure problem existing even
in the absence of turbulence or flow unsteadiness.

This study examines, using numerical techniques, whether the neglect of the closure terms in the
previously cited studies is indeed justified. For particles with nonnegligible inertia, an a priori
justification for such a neglect is not available, although supporting arguments have been put
forth in some cases (Zhang and Prosperetti, 1997; Dimas and Kiger, 1998; DeSpirito and Wang,
2001). The issue is examined using the Lagrangian particle tracking approach wherein the posi-
tions and velocities of individual particles are tracked. This method allows the explicit evaluation
of all the terms in the the dispersed-phase mass and momentum equations by averaging, including
the closure terms.

The outline of the paper is as follows. In Section 2, the continuum equations for flows laden
with rigid spherical particles is presented. This is followed by a description of the Lagrangian
particle tracking procedure along with its coupling to a Navier–Stokes solver. Some important
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results obtained from linear stability analysis of mixing layers are then presented. The paper
concludes with details of the calculations performed, followed by the results.

2. Continuum formulation for dispersed-phase flows

The commonly used equations for the linear stability analysis of flows with particles are based
on ‘‘phase-averaged’’ quantities for both the continuous and the dispersed phases (Saffman, 1962;
Dimas and Kiger, 1998). Phase average of any quantity pertaining to the continuous or dispersed
phase at a point, is defined by averaging over all realizations (for ensemble averaging) in which the
point is in the appropriate phase. The coupled Eulerian–Lagrangian methodology used in this
study considers particles that are smaller than the significant length scales in the flow and ap-
proximates them as point masses. Therefore, calculating quantities such as the dispersed-phase
number density is more natural compared to the dispersed-phase volume fraction. Consequently,
an ‘‘entity-average’’ is used to derive the dispersed-phase equations instead of a phase average,
which is retained for the continuous phase. Entity average pertains to any quantity denoting the
property of a particle as a whole; examples include the center-of-mass velocity and material
density. The average at a point is taken over all realizations in which a particle is centered at that
point.

The use of such a hybrid averaging approach does not pose a serious problem for comparison
with previous studies. If the length scale of variation (L) of the average quantities is larger than the
radius of the particles (a), then the dispersed-phase volume fraction bD, and the phase-averaged
dispersed-phase velocity huDi can be approximated by the number density n, and the center-
of-mass velocity �ww up to leading order as (Prosperetti and Zhang, 1995)

bD ¼ nvp þ O
a
L

� �2

and huDi ¼ �wwþ O
a
L

� �2

; ð1Þ

where vp ¼ 4pa3=3 is the particle volume. Therefore, we consider the dispersed-phase number
density and center-of-mass velocity as approximations to the more commonly used volume
fraction and phase-averaged velocity.

Such an approach, consisting of phase-averaging for the continuous phase and entity-averaging
for the dispersed phase, pursued by Prosperetti and Zhang (Prosperetti and Zhang, 1995; Zhang
and Prosperetti, 1997) is used as a starting point here. The main difference in this study is the use
of spatial averaging along the spanwise homogeneous direction, instead of ensemble averaging in
their case. Spanwise averaging is possible because the flow under consideration is two-dimensional
on an average. The averaging volume can be considered to be infinite in extent in the spanwise
direction, and of an arbitrary size smaller than the length scale of variation of the averaged
quantities in the streamwise and vertical directions. The number of particles in the averaging
volume increases with the spanwise extent and the existence of well-defined average quantities is
given by the infinite spanwise extent of the averaging volume. Following the procedure in Zhang
and Prosperetti (1997), we obtain the following balance equations for the continuous (assumed
incompressible) and the dispersed phases:
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qC

obC

ot
þ qC

o

oxj
ðbChuCjiÞ ¼ 0; ð2Þ

qC

o

ot
ðbChuCiiÞ þ qC

o

oxj
ðbChuCjihuCiiÞ ¼

o

oxj
ðbChrijiÞ þ qC

o

oxj
ðbCsC;ijÞ � bDfi;CD þ qCbCgi;

ð3Þ

qD

on
ot

þ qD

o

oxj
ðn�wwjÞ ¼ 0; ð4Þ

and

qD

o

ot
ðn�wwiÞ þ qD

o

oxj
ðn�wwj�wwiÞ ¼ qD

o

oxj
ðnsD;ijÞ þ nfi;DC þ qDngi; ð5Þ

where

sC;ij ¼ huCiihuCji � huCiuCji; ð6Þ
and

sD;ij ¼ �wwi�wwj � wiwj ð7Þ
represent the unclosed stresses arising out of the averaging process. These terms will hereafter be
referred to as the ‘‘averaging stresses’’. It must be mentioned here that these terms can arise even
in the absence of flow unsteadiness and turbulence. In such a case, they represent the effect of fluid
velocity fluctuations induced by the particles for the fluid phase, and the variation of the particle
velocity along the spanwise direction (or within the ensemble) for the dispersed phase. Note also
that the equations do not account for direct particle–particle interactions or collisions.

In the above set of equations, Eq. (2) represents the transport of the fluid volume fraction by
the phase-averaged fluid velocity and Eq. (4) governs the transport of the particle number density
by the entity-averaged particle velocity. Eqs. (3) and (5) govern the evolution of the phase-
averaged fluid momentum and entity-averaged particle momentum, respectively. Furthermore, bC

denotes the continuous-phase volume fraction such that bC þ bD ¼ 1, qC and qD denote the
densities of the continuous and dispersed phases, respectively, that are assumed to be constants.
The continuous-phase material stress tensor which consists of the pressure and the shear stresses is
denoted by rij, and the average interfacial force per unit particle volume by fi. The interfacial
force terms in the two momentum equations do not sum up to zero because of the different type of
average used for each phase. Conceptually, fi;CD is the average interfacial force due to all the
interfacial surface contained inside the averaging volume, whereas fi;DC is the average over the
surface of all the particles that are centered inside the averaging volume.

The interfacial force can be approximated by that for a flow around an isolated particle for a
dilute dispersed phase (Maxey and Riley, 1983; Zhang and Prosperetti, 1997). For small, rigid and
heavy particles under Stokes-flow conditions, only the drag and the gravitational forces have been
found to be significant (Elghobashi and Truesdell, 1992). The drag force in the Stokes flow regime
can be written as

fi;DC ¼ �9lð�wwi � huCiiÞ=2a2; ð8Þ
where l is the fluid viscosity.
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The arguments presented so far, in support of the neglect of the averaging stress terms (Eqs. (6)
and (7)) are as follows: the averaging stress in the fluid would be dominated by turbulent fluctu-
ations. For laminar flows considered in stability analyses, this term will occur only due to the
disturbance velocities due to the particles. This will be quadratic in the fluid–particle relative ve-
locity and can be neglected for dilute suspensions evolving in the Stokes-flow regime (Zhang and
Prosperetti, 1997). For the dispersed-phase averaging stress, no arguments have been advanced in
previous studies and the terms were neglected in the absence of a reliable option (Dimas and Kiger,
1998; DeSpirito andWang, 2001). For particles with significant inertia that do not follow the same
path as a fluid element, it is not evident that the averaging stress would be negligible.

3. Eulerian–Lagrangian method

A Lagrangian particle tracking module (Narayanan et al., 2002) was developed and coupled
with an incompressible Navier–Stokes solver, to directly calculate and compare the magnitude of
the averaging stress to the other terms in the dispersed-phase momentum equation. Computations
were performed for the initial temporal evolution of a mixing layer with particles.

For Lagrangian particle tracking, the equations governing the particle motion are those from
Maxey and Riley (1983) under the constraints outlined for Eq. (8). For compatibility with pre-
vious studies, the buoyancy force was not considered, giving

dup

dt
¼ � 9l

2qDa2
ðup � u½xpðtÞ	Þ; ð9Þ

where up is the velocity of a particle, xp is its position, and u is the velocity of the fluid interpolated
onto the particle position.

The continuous phase is represented by the incompressible Navier–Stokes equations given by

ouj
oxj

¼ 0; ð10Þ

and

oui
ot

þ uj
oui
oxj

¼ � 1

qf

op
oxi

þ 1

Re
o2ui
ox2j

þ F fp
i ; ð11Þ

where F fp
i is the fluid–particle interaction force per unit volume. The above equations could also

be derived from Eqs. (2) and (3) by assuming that the dispersed-phase is dilute (bD 
 1 or
bC � 1). In other words, the displacement effect of the particles is taken to be negligible. This is
also a limitation imposed by the point-mass assumption inherent in the particle tracking scheme
being outlined. The coupling between the fluid and the particles is achieved by projecting the force
acting on each particle on to the flow grid (Narayanan et al., 2002). The fluid-particle interaction
force vector Ffp has the following form at a grid node �m�:

Ffp
m ¼

XNp

a¼1

qpvp
qfVm

faW ðxa;xmÞ; ð12Þ

where a stands for the particle index, Np for the total number of particles in the flow, fa for the
force on a single particle centered at xa, and W for the projection weight of the force on to the grid
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node �m�, which is calculated based on the distance of the particle from those nodes to which the
particle force is attributed. Vm is the fluid volume surrounding each grid node. For reasons already
discussed, the averaging stress for the continuous phase is neglected.

The Navier–Stokes solver uses a pseudo-spectral collocation method, employing Fourier modes
in the streamwise and spanwise directions and Chebychev polynomials in the vertical, nonperiodic
direction. The solver is specially designed to simulate a temporally evolving mixing layer where
the vertical dimension, infinite in extent, is mapped onto a ½�1; 1	 domain using an exponential
mapping function. Further details of the numerical procedure can be found in Cortesi et al.
(1998).

4. Stability of mixing layers with particles

To place the current study in perspective, a brief overview of the results obtained by linear
stability analysis of mixing layers with a dilute suspension of particles is presented. Several studies
have been conducted on this problem starting from the analytical work of Saffman (1962), to more
recent studies by Dimas and Kiger (1998) and Narayanan and Lakehal (2002). All the above
studies use a similar set of continuum equations to describe the continuous and the dispersed
phases. Specifically, compared to the equations in Section 2, all of them neglect the averaging
stresses. Even so, important results have been obtained on the effect of particles on the Kelvin–
Helmholtz instability of a mixing layer. For example, Saffman (1962) showed through scaling
analysis that small particles will have a destabilizing influence on the flow whereas larger particles
will stabilize the flow. This implies that for a fixed mass loading, there is a particular particle size
that maximizes the stabilizing influence. Dimas and Kiger (1998) presented spatial stability
analysis of an inviscid mixing layer loaded uniformly with particles. They explain the attenuation
of the instability growth rate by showing that particles amplify the vorticity in the braid region
and reduce the vorticity in the core region, thus, acting in opposition to the Kelvin–Helmholtz
instability mechanism.

Narayanan and Lakehal (2002) presented a temporal stability analysis for both uniform and
nonuniform particle loadings. They showed that particles of intermediate Stokes numbers (St)
interact strongly with the flow as compared to particles of small or large Stokes numbers. Stokes
number was defined as the ratio of the particle inertial time scale (sp ¼ 2qDa

2=9l) to the flow time
scale (sf ) defined using the mixing-layer vorticity half-thickness and velocity half-difference. The
growth rate of the mixing layer instability modes versus the perturbation wave number for dif-
ferent Stokes numbers, for a particle mass loading of 0.5 is shown in Fig. 1. Particle mass loading
is defined as the ratio of the mass of particles to the mass of the fluid phase in the flow. Apart from
the overall reduction in the growth rates for all Stokes numbers shown, wave number specific
behaviour is also observed. Particles with St ¼ 1 have a stronger stabilizing influence on the high-
and mid-wave-number range, while particles with St ¼ 10 have an even influence over the whole
wave number range. A significant observation is also the reduction in the most unstable wave
number, because of which a mixing layer with particles would give rise to larger vortical structures
that grow much slower as compared to a particle-free mixing layer. The utility of the these results
rests on the appropriateness of neglecting the averaging-stress terms. The present work aims to
provide heuristic evidence to support this assumption.
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5. Computational parameters

The mixing layer was set up using a hyperbolic-tangent streamwise velocity profile and per-
turbation velocities using the eigenfunctions obtained from linear stability analysis of a mixing
layer uniformly laden with particles (Narayanan and Lakehal, 2002). The amplitude of the per-
turbations was kept small (6 0.01) to ensure that they evolve in the linear regime. All the
quantities were nondimensionalized using the initial vorticity half-thickness as the length scale
and half the velocity difference across the mixing layer as the velocity scale.

The perturbation wave number (k) was set to 0.4448, which is the most unstable wavenumber
for the particle-free case (Narayanan and Lakehal, 2002). The domain size in the streamwise
direction was set to 4p=k. The vertical dimension for the fluid phase extended all the way up to
infinity with the help of an exponential mapping. The dispersed phase was introduced between
½�8; 8	. The spanwise dimension of the domain was chosen based on the number of particles
tracked. Computations were performed with 64 collocation points in the streamwise direction and
129 points in the vertical direction for a flow Reynolds number of 250. The number of points in
the spanwise direction was set based on the spanwise extent of the domain.

Calculations were performed for Stokes numbers of 1, 10, and 50, because the averaging
stresses were expected to become significant for higher Stokes numbers. Because the mass loading
was always fixed to one, the number of particles for a certain case was changed by altering the
spanwise extent of the domain, and not by adjusting the volume fraction or the density of the
particles. Particles were randomly distributed and were initialized to the local fluid velocity.

6. Results

The dispersed-phase number density, and velocities in the streamwise and vertical directions
were determined using a spanwise average. The result is a two-dimensional dispersed-phase field.
Terms in the mass and momentum balance equations (Eqs. (4) and (5)) were then calculated using
finite-difference approximations for the derivatives. Two kinds of averages were calculated for
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Fig. 1. Mixing layer instability growth rates versus wave number for a mass loading of 0.5.
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each term: average over half the domain and average over only the streamwise direction. The
domain average was performed to gain sufficient statistical convergence, but was restricted to one
half of the domain to avoid cancellation resulting from the antisymmetry of the mean streamwise
velocity.

An important restriction in using the formulations described here is the requirement for the
particle Reynolds number (Rep ¼ 2qfajup � uðxpÞj=l) to remain small. This allows the use of the
Stokes-flow approximation to calculate the interfacial interaction force and hence represents
the condition for the validity of Eq. (9). It is not evident a priori, if the small Rep assumption holds
for particles with large Stokes numbers, because the local velocity difference is obtained only as
part of the solution. The fact that the maximum Rep for St ¼ 1, 10, and 50 remains smaller than
one for a considerable duration is confirmed in Fig. 2. This validates the Stokes-flow approxi-
mation in the initial period of evolution of the instability, for the Stokes numbers considered.

6.1. Dependency on the number of particles

For St ¼ 1, the effect of the number of particles used for averaging was studied to show that the
simulation methodology provides an improved approximation to a continuum by increasing the
number of particles. Simulations were performed with 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, and 3.2 million
particles. In all the cases the volume fraction was set to 10�3, and the density ratio was set to 1000.
The nondimensional spanwise domain length was increased from 0.045, for the case with 0.05
million particles, to 2.18 for 3.2 million particles. The corresponding number of grid points in the
spanwise direction were 4 and 128, respectively. Simulations were carried out to a nondimensional
time of 10.

Smoother variation in all the terms is obtained as the number of particles increases. As an
example, the interfacial force distributions in the vertical momentum equation with 0.1, 1.6, and
3.2 million particles are compared in Fig. 3(a). The distribution becomes significantly less noisy
with 1.6 million particles compared to 0.1 million, and moreover, the difference between the
profiles for 1.6 and 3.2 million particles is found to be small. To quantify (using a single number),
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Fig. 2. Maximum particle Reynolds number variation with time.
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the overall accuracy with which the balance between all the terms in the dispersed-phase mo-
mentum equation is achieved, the correlation coefficient between the time-derivative term and the
sum of all the other terms was calculated. The correlation between two discrete functions fk and gk
is defined as

Cðfk; gkÞ ¼
P

k fkgkP
k f

2
k

P
k g

2
k

� �1=2 : ð13Þ

The variation of the correlation coefficient for different numbers of particles is shown in Fig. 3(b).
For streamwise averaged quantities at a nondimensional time of 10, the correlation increases with
increasing number of particles for the mass as well as the momentum equations. Thus, by in-
creasing the number of particles (through an increase in the spanwise length of the domain) the
present calculation methodology provides an improving approximation to a continuum. With 3.2
million particles, the correlation for all the equations reaches values around 0.8 or more.

The simulation with 3.2 million particles for St ¼ 1 is used for all subsequent analysis. For
St ¼ 10 and 50, such an extensive study is not feasible because the spanwise extent of the do-
main and the resulting number of collocation points makes it prohibitively expensive. As the
motivation for this study is the examination of the relative magnitude of the terms balancing the
dispersed-phase continuum equations, relevant conclusions could be drawn even without very
smooth profiles. The St ¼ 10 and 50 results were obtained using 0.4 and 0.2 million particles,
respectively. For St ¼ 10 and 50, the calculations were performed up to a nondimensional time
of 40 and 60, respectively. Due to their higher inertia, these particles require more time to re-
spond to the flow perturbations. However, extending the computation for too long makes the
energy in the subharmonic mode comparable to the fundamental mode, thus, changing the
nature of the problem. This criterion acts to limit the simulation time possible for higher Stokes
numbers.

-6 -3 0 3 6
z

-1.5×10
-5

0.0

1.5×10
-5

fo
rc

e 
(z

-m
om

.)

0.1 million
1.6 million
3.2 million

(a)
10

5
10

6
Np

0.2

0.4

0.6

0.8

1

co
rr

el
at

io
n

mass
x-mom.
z-mom.

(b)

Fig. 3. (a) Variation of the interfacial force in the vertical momentum equation for different numbers of particles

(St ¼ 1), (b) variation of the correlation between the time-derivative and the sum of all the other terms with the number

of particles.
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6.2. Domain averaged results

The time evolution of the domain-averaged terms balancing the momentum equation in the
vertical direction for St ¼ 1 particles is shown in Fig. 4. The main balance is between the time-
derivative, convective, and interfacial force terms. The averaging stress is found to be two orders
of magnitude smaller than the other terms. Also, the time-derivative term and the sum of all the
other terms are close to each other, showing that an overall balance is achieved. Note that the
averaging-stress term is coincident with the horizontal axis in Fig. 4 as well as in some figures in
the next section.

On their own, the results shown in Fig. 4 do not provide evidence for the averaging stress to be
small everywhere in the domain; especially at the center of the mixing layer, which controls the
dynamics of the instability evolution. Therefore, a detailed picture resulting from streamwise
averaging at a particular time instant is presented below.

6.3. Streamwise averaged results

The terms balancing the streamwise momentum equation for St ¼ 1 particles at a nondimen-
sional time of 10, is shown in Fig. 5(a) and (b). Since the time-derivative term is noisier than the
other terms, it is shown in a separate figure to not obscure any detail. The sum of all the other
terms balancing the time-derivative term shown in Fig. 5(b) suggests that a balance between the
terms is achieved. The averaging stress is found to be negligibly small even at the center of the
domain. The main balance is between the time-derivative, convective, and interfacial force terms.
The corresponding plots for the vertical momentum equation are presented in Fig. 6, where the
averaging stress is again found to be negligible. The smoother profiles for the vertical momentum
balance is consistent with the higher correlation coefficients obtained (Fig. 3(b)).

The variation of the averaging stress along the vertical direction is shown in Fig. 7 for both the
streamwise and vertical momentum equations. An interesting observation is that, although the
averaging stress is small, it is not exactly zero everywhere. It actually shows a deterministic
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Fig. 4. Vertical momentum balance averaged over one half of the domain versus time for St ¼ 1 particles.
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variation, especially for the vertical momentum balance. However, no attempt has been made here
to examine this behaviour in more detail.

The variation of the convective, averaging stress, and interfacial force terms for the streamwise
and vertical momentum equations is presented in Fig. 8 for St ¼ 10 particles, and in Fig. 9 for
St ¼ 50 particles. The streamwise averaged quantities were calculated at a nondimensional time of
40. Without analyzing the profiles in detail, we observe that the averaging stress for both Stokes
numbers is small enough to be neglected. The variation in the averaging stress shown in Fig. 10 is
clearly noisier than St ¼ 1 due to the smaller number of particles, however, the profiles are
qualitatively similar to those for St ¼ 1 particles.

In short, the averaging stress, although not precisely zero at the center of the mixing layer, can
be neglected compared to the other terms in the dispersed-phase momentum equations, for the
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initial evolution of a mixing layer with particles. The results provide heuristic evidence showing
the stability analyses presented in previous studies to be appropriate for the Stokes numbers
considered. It remains to be seen if the same is true during the nonlinear evolution period and
beyond, including the pairing of vortices and transition to turbulence. This is, however, beyond
the scope of this study.

7. Conclusion

The initial evolution of mixing layers is described by the growth of unstable perturbations, the
form and growth rates of which can be obtained by a linear stability analysis of the mean velocity
profile. Such studies have usually used continuum equations to describe both the fluid and the
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Fig. 8. Convective, averaging stress, and interfacial force terms for St ¼ 10 particles: (a) streamwise momentum,

(b) vertical momentum.
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Fig. 7. Averaging stress distribution in the streamwise and vertical directions for St ¼ 1 particles.
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particle phases. The form of the continuum equations for the dispersed phase was numerically
analyzed with the aid of Lagrangian particle tracking coupled to an incompressible Navier–Stokes
solver. The closure terms in the dispersed-phase momentum equations were directly calculated by
spatial averaging and compared to the other terms. Computations were performed for the initial
temporal evolution of a mixing layer with the Stokes drag being the only interfacial force con-
sidered. Calculations were performed for Stokes numbers of 1, 10, and 50.

A parametric study of the effect of the number of particles used for averaging was performed
for St ¼ 1 with 0.05 to 3.2 million particles. Smoother variation in all the terms was obtained by
increasing the number of particles. The overall accuracy with which the mass and momentum
balance was achieved was quantified by calculating the correlation between the time-derivative
term and the sum of all the other terms. The correlation showed an increasing trend with
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Fig. 10. Averaging stress distribution in the streamwise and vertical directions: (a) St ¼ 10, (b) St ¼ 50.
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Fig. 9. Convective, averaging stress, and interfacial force terms for St ¼ 50 particles: (a) streamwise momentum,

(b) vertical momentum.
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increasing number of particles for both the mass and the momentum equations. Thus, by in-
creasing the number of particles, an improved approximation to a continuum is obtained.

The balance between the terms averaged over one half of the domain revealed that the main
contributors were the time-derivative, convective and interfacial force terms. The averaging stress
was found to be two orders of magnitude smaller than the other terms. To ensure that the av-
eraging stress is small everywhere in the domain, especially at the center of the mixing layer, the
balance resulting from streamwise averaging at a particular time instant was also presented. For
all the Stokes numbers, the averaging stress was found to be negligibly small, even at the center of
the mixing layer. An interesting observation is that although the averaging stress term was small
compared to the other terms, it was not exactly zero everywhere, and showed a deterministic
variation.

Calculations were performed only for temporally evolving mixing layers, but the results could
possibly apply for similar laminar free-shear flows such as jets and wakes. A logical next step
would involve investigating the dispersed-phase momentum balance during the later stages in the
evolution of a mixing layer with particles, including the process of vortex pairing and transition to
turbulence.
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